[1]朱辛育①,李智鹏②,蒋榕培②,等.N2O基单组元气体推进剂的爆炸事故分析[J].爆破器材,2020,49(01):60-64.[doi:10.3969/j.issn.1001-8352.2020.01.012]
 ZHU Xinyu,LI Zhipeng,JIANG Rongpei,et al.Explosion Accident Analysis of N2O-base Gas Monopropellant[J].EXPLOSIVE MATERIALS,2020,49(01):60-64.[doi:10.3969/j.issn.1001-8352.2020.01.012]
点击复制

N2O基单组元气体推进剂的爆炸事故分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年01
页码:
60-64
栏目:
安全与测试
出版日期:
2020-01-20

文章信息/Info

Title:
Explosion Accident Analysis of N2O-base Gas Monopropellant
文章编号:
5364
作者:
朱辛育李智鹏蒋榕培李玉艳徐森①③刘大斌
①南京理工大学化工学院(江苏南京,210094)
②北京航天试验研究所(北京,100074)
③国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
ZHU Xinyu LI Zhipeng JIANG Rongpei LI Yuyan XU Sen①③ LIU Dabin
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Beijing Institute of Aerospace Testing Technology (Beijing, 100074)
③ National Quality Supervision and Inspection Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
氧化亚氮气体推进剂实验事故分析电磁阀绝热压缩
Keywords:
nitrous oxide gas propellant experimental accident analysis electromagnetic valve adiabatic compression
分类号:
X932
DOI:
10.3969/j.issn.1001-8352.2020.01.012
文献标志码:
A
摘要:
针对新型N2O基单组元气体推进剂在发动机试车过程中发生的爆炸事故,通过推进剂的基础安全特性实验与管道阀门的结构分析,开展了事故原因分析。气体推进剂点火能量的实验结果表明,临界点火能量在0.25~0.50 mJ之间。在实验管道中的火焰传播速度能达到410 m/s。临界着火温度的实验结果显示,样品的最低着火温度为135 ℃。阀门的工作原理与结构分析结果显示,在阀门通电开启过程中,会对活塞上方4.06 mL的气体产生压缩作用。根据绝热方程计算可知,气体在压缩过程中温度可升至193.7 ℃。对比实验与理论计算可以推知,阀门启动过程中的压缩作用,可能是发生爆炸事故的根本原因。
Abstract:
Root cause analysis through basic safety characteristic experiment of fuel and the structure analysis of piping valve was conducted on the explosion accident of the new N2O-base single gas component propellant during engine test. The experimental results show that the critical ignition energy of the gas propellant is in the range of 0.25 mJ to 0.50 mJ, and the propagation velocity of flame within the experimental pipe can reach to 410 m/s. Critical ignition temperature test results show that the minimum ignition temperature of the sample is 135 ℃. Valve structure and working principle analysis results show that the electrified opening of the valve will impose a compression over the 4.06 mL gas above the piston. The adiabatic equation calculation shows that gas temperature can be up to 193.7 ℃ during the compression. It can be inferred from the comparative test and theoretical calculation that the compression action in the valve start-up process may be the root cause of the explosion accident.

参考文献/References:

[1]朱成财, 韩伟, 于忻立, 等. 氧化亚氮基单元复合推进剂技术研究述评[J]. 火箭推进,2016,42(2):79-85.
ZHU C C,HAN W,YU X L,et al. Review of nitrousoxide-based composite monopropellants technology [J].Journal of Rocket Propulsion,2016,42(2):79-85.
[2]邓德涛, 沈赤兵, 李清廉. 氧化亚氮火箭发动机试验研究进展[C]//航空宇航与控制科学分论坛论文集.湖南省研究生创新论坛.长沙,2009:307-312.
DENG D T, SHEN C B, LI Q L, et al. Progress of experimental investigation on nitrous oxide rocket engine[C]//Proceedings of Aerospace and Control Science BBS. Postgraduate Innovation BBS in Hu’nan Province.Changsha, 2009:307-312.
[3]张春燕, 陶刚, 涂善东, 等. 低压氢气-空气混合物爆炸试验研究及数值模拟[J]. 中国安全科学学报, 2018, 28(2): 87-92.
ZHANG C Y, TAO G, TU S D, et al. Experimental study and numerical simulation of low-pressure hydrogen-air mixture explosion[J]. China Safety Science Journal, 2018, 28(2): 87-92.
[4]WERLING L, PERAKIS N, HOCHHEIMER B, et al. Experimental investigations based on a demonstrator unit to analyze the combustion process of a nitrous oxide/ethene premixed green bipropellant[C]//5th CEAS Air & Space Conference. Delft, Netherlands,2015.
[5]WERLING L, GERNOTH A, SCHLECHTRIEM S. Investigation of the combustion and ignition process of a nitrous oxide/ethene fuel blend[C]//Space Propulsion Conference. Cologne, Germany, 2014.
[6]TAYLOR R. Safety and performance advantages of nitrous oxide fuel blends (NOFBX) propellants for manned and unmanned spaceflight applications[C]//Proceedings of the Conference ‘A Safer Space for Safer World’. Versailles, France, 2012.
[7]刘肖, 姜小存, 唐涛, 等. 国外一氧化二氮推进剂的应用研究[J]. 飞航导弹, 2013(6): 74-78.
[8]WHITMORE A, CHANDLER S N. Engineering model for self-pressurizing saturated-N2O-propellant feed systems[J]. Journal of Propulsion & Power, 2010, 26(4):706-714.
[9]ZHANG B, NG H D, MVEL R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(9):5707-5716.
[10]ZHANG B, NG H D, LEE J H S. The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures[J]. Combustion & Flame, 2012, 159(9):2944-2953.
[11]ZHANG B, LIU H, WANG C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture[J]. Applied Thermal Engineering, 2017, 127:671-678.
[12]VENKATESH P B, D’ENTREMONT J, MEYER S E, et al. High-pressure combustion and deflagration-to-detonation transition in ethylene/nitrous oxide mixtures[C]//8th U.S. National Combustion Meeting. Park City, Utah, USA, 2013.
[13]MERRILL C. Nitrous oxide explosive hazards AFRL-RZ-ED-TP-2008-184[R].Edwards AFB,CA,USA:Air Force Research Laboratory, 2008.
[14]MOVILEANU C, RAZUS D , MITU M ,et al. Explosion of C2H4-N2O-N2 in elongated closed vessels [C]//Proceedings of the European Combustion Meeting 2015.Budapest, Hungary:ELTE,2015.
[15]MVEL R, DAVIAENKO D, LAFOSSE F, et al. Detonation in hydrogen-nitrous oxide-diluent mixtures: an experimental and numerical study[J]. Combustion & Flame, 2015,162(5):1638-1649.
[16]曾祥敏, 张玉刚, 蒋榕培, 等. N2O/C2H4/CO2预混气体火焰传播及爆炸特性的试验研究[J]. 火炸药学报, 2018, 41(5): 501-505.
ZENG X M, ZHANG Y G, JIANG R P, et al. Experimental investigation of flame propagation and explosion properties of premixed gases N2O/C2H4/CO2 [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 501-505.
[17]李智鹏, 蒋榕培, 王亚军, 等. 氧化亚氮基绿色单组元推进剂火焰传播速度研究[C]//中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议.西安,2016.
[18]李智鹏,孙海云,蒋榕培,等.乙烯-氧化亚氮层流预混燃烧过程研究[J].火箭推进,2018,44(5):37-42.
 LI Z P, SUN H Y, JIANG R P, et al.Study on premixed laminar combustion process of ethylene/nitrous oxide mixture[J]. Journal of Rocket Propulsion, 2018,44(5):37-42.

备注/Memo

备注/Memo:
收稿日期:2019-05-23
基金项目:国防科技创新特区项目
第一作者:朱辛育(1995-),男,硕士研究生,主要从事气体推进剂的安全应用。E-mail:969519991@qq.com
通信作者:徐森(1981-),男,副教授,主要从事含能材料安全性研究。E-mail:xusen@njust.edu.cn
更新日期/Last Update: 2020-01-20