[1]范士锋①,李雅津②,李军强②,等.含ADN或TKX-50的叠氮高能固体推进剂能量特性分析[J].爆破器材,2019,48(05):12-18.[doi:10.3969/j.issn.1001-8352.2019.05.003]
 FAN Shifeng,LI Yajin,LI Junqiang,et al.Analysis of Energy Characteristics of Azide-based Solid Propellants Containing ADN or TKX-50[J].EXPLOSIVE MATERIALS,2019,48(05):12-18.[doi:10.3969/j.issn.1001-8352.2019.05.003]
点击复制

含ADN或TKX-50的叠氮高能固体推进剂能量特性分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年05
页码:
12-18
栏目:
基础理论
出版日期:
2019-09-29

文章信息/Info

Title:
Analysis of Energy Characteristics of Azide-based Solid Propellants Containing ADN or TKX-50
文章编号:
5344
作者:
范士锋李雅津李军强谢五喜杨洪涛
①海军装备部(陕西西安,710065)
② 西安近代化学研究所(陕西西安,710065)
Author(s):
FAN Shifeng LI Yajin LI Junqiang XIE Wuxi YANG Hongtao
①Naval Equipment Department (Shaanxi Xi’an, 710065)
② Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
叠氮含能黏合剂 高能推进剂 能量特性 高能量密度化合物
Keywords:
azide-based energetic binder high energy propellant energy characteristics high energy density compound (HEDM)
分类号:
TQ560.7;V512
DOI:
10.3969/j.issn.1001-8352.2019.05.003
文献标志码:
A
摘要:
利用最小自由能法研究了叠氮类[如聚叠氮缩水甘油醚(GAP)、3,3’-双叠氮甲基氧丁烷-四氢呋喃共聚醚(PBT)、聚3-甲基-3-叠氮甲基环氧丁烷(PAMMO)]高能固体推进剂的能量特性参数,重点研究了二硝酰胺铵(ADN)和5,5’-联四唑-1,1’-二氧二羟铵(TKX-50)在不同固体填料配比下对推进剂能量特性的影响规律。结果表明:在高固含量的叠氮推进剂中,用ADN取代高氯酸铵(AP),由于燃烧产物平均相对分子量降低,推进剂比冲提高;叠氮类推进剂能量由大到小为GAP、PBT、PAMMO;TKX-50用于叠氮类高能固体推进剂中,由于体系内的负氧平衡问题,TKX-50与奥克托今(HMX)、AP或ADN间存在能量的最优配比。用TKX-50完全取代HMX时,ADN/TKX-50/Al推进剂的理论比冲为2 790.6 N?s/kg,比ADN/HMX/Al推进剂的理论比冲增加了30.7 N?s/kg。
Abstract:
The minimum free energy method was used to study the effects of ammonium dinitramide (ADN) and dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50), when serve as solid fillers, on energy characteristics of glycidyl azide polymer (GAP), 3,3-bis(azidomethyl) oxybutylene-tetrahydrofuran (PBT), or 3-azidomethyl-3-methyloxetane homopolymer (PAMMO) based propellants. Calculated results indicate that the specific impulses are evidently enhanced due to the decreasing in average relative molecular mass of combustion products, in the case of the substitution of ADN for ammonium perchlorate (AP) in high solid content propellant. Energy characteristics order of azide-based propellants is GAP>PBT>PAMMO. Theoretical specific impulse for azide-based propellants containing TKX-50 present an optimal value of energy due to the negative oxygen balance in the formula. The impulse of ADN/TKX-50/Al formula propellant is 2 790.6 N?s/kg, 30.7 N?s/kg greater than that of the ADN/HMX/Al formula propellant.

参考文献/References:

[1]庞爱民, 郑剑. 高能固体推进剂技术未来发展展望 [J]. 固体火箭技术, 2004, 27(4): 289-293.
 PANG A M, ZHENG J. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology, 2004, 27(4): 289-293.
[2]罗运军, 刘晶如. 高能固体推进剂研究进展[J]. 含能材料, 2007, 15(4): 407-410.
 LUO Y J, LIU J R. Research progress of high energy solid propellant[J]. Chinese Journal of Energetic Mate-rials, 2007, 15(4): 407-410.
[3]孙运兰. 新型含能材料的燃烧机理研究[D]. 合肥: 中国科学技术大学, 2007.
 SUN Y L. Combustion mechanism of new promising energetic materials[D]. Hefei: University of Science and Technology of China, 2007.
[4]DIAZ E, BROUSSEAU P, AMPLEMAN G, et al. Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 101-106.
[5]周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2):87-92.
 ZHOU X Y, TANG G, PANG A M. Research progress of ADN propellant[J]. Aerodynamic Missile Journal, 2017(2):87-92.
[6]HEINTZ T, PONTIUS H, ANIOL J, et al. Ammonium dinitramide (ADN): prilling, coating, and characterization [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(3): 231-238.
[7]MENKE K, HEINTZ T, SCHWEIKERT W, et al. Approaches to ADN propellants based on two different binder systems[C]//Proceedings of the 39th International Annual Conference of ICT. Karlsruhe, Germany, 2008.
[8]潘永飞, 汪营磊, 陈斌, 等. 二硝酰胺铵(ADN)球形化技术研究进展[J]. 爆破器材, 2018, 47(5): 1-8.
 PAN Y F, WANG Y L, CHEN B, et al. Research status of spheroidization of ammonium dinitramide (ADN)[J]. Explosive Materials, 2018, 47(5): 1-8.
[9]居平文. 双环四唑类含能化合物的合成研究[D]. 南京: 南京理工大学, 2015.
 JU P W. Synthesis of bicyco-tetrazolium energetic compounds[D]. Nanjing: Nanjing University of Science & Technology, 2015.
[10]宗和厚, 张伟斌, 李华荣, 等. TKX-50高压下结构、力学性质及电子特性的第一性原理研究[J]. 含能材料, 2018, 26(1): 59-65.
 ZONG H H, ZHANG W B, LI H R, et al. Structural, mechanical and electronic properties of dihydroxylammonium 5,5’-bistetrazole-1,1’ -diolate (TKX50) under high pressures: a first-principles study[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 59-65.
[11]余一, 张蕾, 姜胜利. TKX-50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018, 26(1): 75-79.
 YU Y, ZHANG L, JIANG S L. Molecular simulation on the nitrogen generation in thermal decomposition of TKX-50[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 75-79.
[12]FISCHER N, FISCHER D, KLAPOTAKE T M, et al. Pushing the limits of energetic materials:the synthesis and characterization of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate[J]. Journal of Materials Che-mistry, 2012, 22(38): 20418-20422.
[13]庞爱民. 固体火箭推进剂理论与工程[M]. 北京:中国宇航出版社, 2014.
 PANG A M. Solid rocket propellant theory and enginee-ring[M]. Beijing:China Aerospace Publishing Press, 2014.
[14]李猛, 赵凤起, 罗阳. 含5,5’-联四唑-1,1’-二氧二羟铵推进剂的能量特性计算[J]. 含能材料, 2014, 22(3): 286-290. 
LI M, ZHAO F Q, LUO Y. Energetic characteristics computation of propellants containing dihydroxylammo-nium 5,5’-biste- trazole-1,1’-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 286-290.
[15]曹一林, 刘剑平. 氧化高氮杂环羟胺盐在固体推进剂中的能量性能分析[J]. 含能材料, 2015, 23(10): 919-923.
 CAO Y L, LIU J P. Analysis of energy performance of oxidation high nitrogen heterocycle hydroxylammonium salts in the solid propellants[J]. Chinese Journal of Energetic Materials, 2015, 23(10):919-923.
[16]郑剑, 候林法, 杨仲雄. 高能固体推进剂技术回顾与展望[J]. 固体火箭技术, 2001(1): 28-34.
 ZHENG J, HOU L F, YANG Z X. The progress and prospects of high energy propellants[J]. Journal of Solid Rocket Technology, 2001(1):2834.
[17]MATSUNAGA H, KATOH K, HABU H, et al. Thermal behavior of ammonium dinitramide and amine nitrate mixtures[J]. Journal of Thermal Analysis and Calori-metry, 2019, 135(5): 2677-2685.
[18]刘晶如, 罗运军, 杨寅. 新一代高能固体推进剂的能量特性计算研究[J].含能材料,2008,16(1):94-99. 
LIU J R, LUO Y J, YANG Y. Energetic characteristics calculation of a new generation of high energy solid propellant[J]. Chinese Journal of Energetic Materials, 2008, 16(1):94-99.
[19]李谨卫, 庞爱民, 吴京汉. GAP高能低特征信号推进剂的研究[J].固体火箭技术,2001,24(3):42-46.
 LI J W, PANG A M, WU J H. Study on GAP based high energy, low signature propellant[J]. Journal of Solid Rocket Technology, 2001, 24(3): 42-46.

备注/Memo

备注/Memo:
收稿日期:2019-03-31
第一作者:范士锋(1978-),男,高级工程师,主要从事海军装备质量与技术管理研究。E-mail:369287541@qq.com
通信作者:李雅津(1987-),女,助理研究员,主要从事高能固体推进剂性能的研究。E-mail:liyajin0813@163.com
更新日期/Last Update: 2019-09-27