[1]苏浩①,仲海霞②,曹勇①,等.锆金属粉尘云最小点火能和最低着火温度的试验研究[J].爆破器材,2019,48(02):25-31,36.[doi:10.3969/j.issn.1001-8352.2019.02.005]
 SU Hao,ZHONG Haixia,CAO Yong,et al.Experimental Investigation of the Minimum Ignition Energy and the Minimum Ignition Temperature of Zirconium Dust Cloud[J].EXPLOSIVE MATERIALS,2019,48(02):25-31,36.[doi:10.3969/j.issn.1001-8352.2019.02.005]
点击复制

锆金属粉尘云最小点火能和最低着火温度的试验研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年02
页码:
25-31,36
栏目:
基础理论
出版日期:
2019-04-02

文章信息/Info

Title:
Experimental Investigation of the Minimum Ignition Energy and the Minimum Ignition Temperature of Zirconium Dust Cloud
文章编号:
5287
作者:
苏浩仲海霞曹勇李斌
①南京理工大学化工学院(江苏南京,210094)
②常州市天成安全评价有限公司(江苏常州,213000)
Author(s):
SU Hao ZHONG Haixia CAO Yong LI Bin
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Changzhou Tiancheng Safety Evaluation Co., Ltd. (Jiangsu Changzhou, 213000)
关键词:
粉尘云最小点火能最低着火温度
Keywords:
zirconium dust cloud minimum ignition energy (MIE) minimum ignition temperature (MIT)
分类号:
O381;X932
DOI:
10.3969/j.issn.1001-8352.2019.02.005
文献标志码:
A
摘要:
为研究锆金属粉尘云燃烧的基础特性参数,从而为其安全性能提供依据,采用哈特曼管试验系统和最低着火温度测定系统分别对锆金属粉尘云的最小点火能(MIE)和最低着火温度(MIT)开展试验研究。分别研究了锆金属粉尘云质量浓度、点火延迟时间和喷粉压力对MIE的影响,以及粉尘云质量浓度对MIT的影响。结果得出:中位径为33.49 μm的锆金属粉尘云的MIE在1~3 mJ之间;在50~500 g/m3质量浓度范围下,随着质量浓度增大,MIE先减小后增大,在质量浓度为400 g/m3时达到最小;点火延迟时间从10 ms增至180 ms,MIE先减小后增大,在60 ms时达到最小;喷粉压力从0.4 MPa增至1.0 MPa,MIE先减小后增大,在0.6~0.8 MPa间达到最小。该粒度锆金属粉尘云的MIT为210 ℃左右,在一定浓度范围下,MIT随粉尘浓度的增加而减小。
Abstract:
In order to study the basic characteristic parameters of zirconium dust cloud to provide a basis for its safety performance, experimental research on zirconium dust cloud was carried out. The minimum ignition energy (MIE) and the minimum ignition temperature (MIT) of zirconium dust cloud were tested by Hartmann tube system and Godbert-Greenwald furnace, respectively. Influences of mass concentration, ignition delay time and powder injection pressure on MIE, and influence of mass concentration on MIT were studied. The experimental results show that MIE of zirconium dust cloud with median diameter of 33.49 μm is between 1mJ and 3 mJ. MIE decreases first and then increases with the increase of mass concentration in the range of 50 g/m3 and 500 g/m3, and reaches its minimum when mass concentration is 400 g/m3. MIE decreases first and then increases when ignition time increases from 10 ms to 180 ms, and reaches its minimum at 60 ms. MIE decreases first and then increases with the increases of powder injection pressure from 0.4 MPa to 1.0 MPa, and the optimum pressure is between 0.6 MPa and 0.8 MPa. MIT of zirconium dust cloud is around 210 ℃. MIT reduces with the increase of concentration.

参考文献/References:

[1]游天龙. 钛金属粉尘关键爆炸参数测试研究[D]. 太原:中北大学, 2015.
 YOU T L. Study on the key explosion parameters of titanium dust[D].Taiyuan:North University of China,2015.
[2]邓军, 任旭刚, 王秋红,等. 锆金属粉尘云的爆炸特性[J]. 爆炸与冲击, 2017, 37(3):496-501.
DENG J,REN X G, WANG Q H, et al.Explosion cha-racteristics of zirconium dust cloud[J]. Explosion and Shock Waves, 2017, 37(3):496-501.
[3]HOSSEINZADEH S, NORMAN F, VERPLAETSEN F, et al. Minimum ignition energy of mixtures of combustible dusts[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:92-97.
[4]ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures[J]. Journal of Hazardous Materials, 2016, 307:302-311.
[5]DANZI E, MARMO L, RICCIO D. Minimum ignition temperature of layer and cloud dust mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:326-334.
[6]ADDAI E K, GABEL D, KRAUSE U. Models to estimate the minimum ignition temperature of dusts and hybrid mixtures[J]. Journal of Hazardous Materials, 2016, 304:73-83.
[7]CHOI K, SAKASAI H, NISHIMURA K. Minimum ignition energies of pure magnesium powders due to electrostatic discharges and nitrogens effect[J]. Journal of Loss Prevention in the Process Industries, 2016, 41:144-146.
[8]WU H C, CHANG R C, HSIAO H C. Research of minimum ignition energy for nano titanium powder and nano iron powder[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1):21-24.
[9]LEPIK P, GABEL D, ADAMUS W, et al. Determination of the minimum ignition energy on different devices[J]. Transactions of the VSb-Technical University of Ostrava:Safety Engineering Series, 2015, 10(1):8-14.
[10]ADDAI E K, GABEL D, KRAUSE U. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents[J]. Journal of Hazardous Materials, 2016, 301:314-326.
[11]XU S, LIU J F, CAO W, et al. Experimental study on the minimum ignition temperature and combustion kine-tics of coal dust/air mixtures[J]. Powder Technology, 2017,317:154-161.
[12]WU D J, NORMAN F, VERPLAETSEN F, et al. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres[J]. Journal of Hazardous Materials, 2016,307:274-280.
[13]KUAI N S, HUANG W X, DU B, et al. Experiment-based investigations on the effect of ignition energy on dust explosion behaviors[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):869-877.
[14]WANG B B, ZHOU L L, XU K L, et al. Fast prediction of minimum ignition energy from molecular structure using simple QSPR model[J]. Journal of Loss Prevention in the Process Industries, 2017, 50(1):290-294.
[15]VADCHENKO S G, GRIGOREV YU M, MERZHANOV A G. Investigation of the mechanism of the ignition and combustion of the systems Ti+C, Zr+C by an electrothermographic method[J]. Combustion Explosion & Shock Waves, 1976, 12(5):606-612.
[16]BEDUNEAU J L, KIM B, ZIMMER L, et al. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark[J]. Combustion & Flame, 2003, 132(4):653-665.
[17]丁以斌, 孙金华, 何学超,等. 锆粉尘云的火焰传播特性[J]. 燃烧科学与技术, 2010, 16(4):353-357.
 DING Y B, SUN J H, HE X C, et al.Flame propagation characteristic of zirconium particle cloud[J].Journal of Combustion Science and Technology,2010,16(4):353-357.
[18]丁以斌. 锆粉云火焰传播特性的实验研究[D]. 合肥:中国科学技术大学, 2010.
DING Y B . Experimental study on flame propagation characteristics of zirconium particle cloud[D]. Hefei:University of Science and Technology of China,2010.
[19]王秋红, 孙金华, 周琪,等. 锆粉空气预混物多管喷射燃烧的火焰温度特征[J]. 燃烧科学与技术, 2012,18(5):448-455.
WANG Q H, SUN J H, ZHOU Q, et al. Flame tempe-rature characteristics of multi-tube injection combustion of zirconium-air cloud mixtures[J].Journal of Combustion Science and Technology, 2012,18(5):448-455.
[20]王秋红, 孙金华, 邓军. 管道中锆粉云火焰传播的温度与速度特性[J]. 北京科技大学学报, 2014,36(10):1378-1383.
WANG Q H, SUN J H,DENG J.Flame temperature and propagation speed characteristics of zirconium dust cloud flame propagation in pipelines[J]. Journal of University of Science and Technology Beijing, 2014,36(10):1378-1383.
[21]YIN Y, SUN J H, DING Y B, et al. Experimental study on flames propagating through zirconium particle clouds[J]. Journal of Hazardous Materials, 2009, 170(1):340-344.
[22]王秋红. 锆粉云瞬态火焰及连续喷射火焰特性的实验研究[D]. 合肥:中国科学技术大学, 2012.
 WANG Q H. Experimental study on characteristics of transient flame and continuous jet flame of zirconium dust cloud[D].Hefei:University of Science and Technology of China,2012.
[23]RANDEBERG E, ECKHOFF R K. Initiation of dust explosions by electric spark discharges triggered by the explosive dust cloud itself[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):154-160.
[24]ASTM. Standard test method for minimum ignition energy of a dust cloud in air:E2019—2002[S].
[25]ASTM. Standard test method for minimum autoignition temperature of dust clouds:E1491—2006[S].

备注/Memo

备注/Memo:
收稿日期:2018-08-22
第一作者:苏浩(1994- ),男,硕士研究生,研究方向为粉尘爆炸。 E-mail:sstmay@163.com
通信作者:李斌(1984- ),男,讲师,研究方向为防火防爆技术。E-mail:libin@njust.edu.cn
更新日期/Last Update: 2019-04-01