[1]崔小杰①,张孙嘉②,张国伟①.基于AUTODYN的复合防护结构数值模拟[J].爆破器材,2019,48(01):52-57.[doi:10.3969/j.issn.1001-8352.2019.01.010]
 CUI Xiaojie,ZHANG Sunjia,ZHANG Guowei.Numerical Simulation of Composite Protective Structure Based on AUTODYN[J].EXPLOSIVE MATERIALS,2019,48(01):52-57.[doi:10.3969/j.issn.1001-8352.2019.01.010]
点击复制

基于AUTODYN的复合防护结构数值模拟()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年01
页码:
52-57
栏目:
爆炸材料
出版日期:
2019-01-18

文章信息/Info

Title:
Numerical Simulation of Composite Protective Structure Based on AUTODYN
文章编号:
5274
作者:
崔小杰张孙嘉 张国伟
①中北大学机电工程学院(太原,030051)
②浙江工业大学计算机科学与技术学院(软件学院)(浙江杭州,310000)
Author(s):
CUI Xiaojie ZHANG SunjiaZHANG Guowei
① School of Mechatronics Engineering,North University of China (Shanxi Taiyuan, 030051)
② School of Computer Science and Technology (School of Software), Zhejiang University of Technology (Zhejiang Hangzhou, 310000)
关键词:
复合防护爆炸冲击波超压峰值高效衰减性数值模拟
Keywords:
composite protective explosion shock wave overpressure peak high-efficiency attenuation numerical simulation
分类号:
TJ410.3
DOI:
10.3969/j.issn.1001-8352.2019.01.010
文献标志码:
A
摘要:
为了更好地保护小当量爆炸物处理人员的安全,提出了一种由胶体、聚氨酯、泡沫铝和凯夫拉4种材料构成的圆柱形复合防护结构。对100 g TNT爆炸物选择模型比例为1:1,利用AUTODYN软件建立二维仿真模型,采用2D-Euler算法数值模拟此防护结构对爆炸冲击波的减弱效果,并进行分析研究。研究得出:复合防护结构能很好地降低冲击波超压峰值,从而间接地增强人体对超压的忍受度,保证一定范围内人员的生命安全。该防护结构具有便携性、机动性及对爆炸冲击波的高效衰减性,正好适用于轻量、便携及有效防护的应用背景,对相关防护结构的研究设计起到很好的参考作用。
Abstract:
In order to guarantee the safety of personnel handling small quantities of explosives, a cylindrical composite protective structure made of four materials, including colloid, polyurethane, aluminum foam and Kevlar was proposed. A 1:1 ratio of 100 g TNT explosives was selected. A two-dimensional simulation model was developed by AUTODYN software. The attenuation effect of this structure on the blast shock wave was numerically simulated by 2D-Euler algorithm and analyzed. The study shows that the compound protective structure can well reduce the peak value of shock wave overpressure, thereby indirectly increasing the tolerance of human exposure to overpressure and ensuring the life safety of personnel within a certain range. The protective structure has portability, mobility and high efficiency decay of blast shock wave, which is suitable for the application background of light weight, portable and effective protection and plays a good reference role for the research and design of the relevant protective device.

参考文献/References:

[1]方向,高振儒,周守强,等.反爆炸恐怖袭击防排爆技术综述[J].中国工程科学,2013,15(5):80-83.
FANG X,GAO Z R, ZHOU S Q,et al.Summarization of prevention and removing technology against terrorist attacks explosion[J]. Engineering Science, 2013,15(5):80-83.
[2]毛益明,方秦,张亚栋,等.水体防爆墙与混凝土防爆墙削波减爆作用研究[C]//第九届全国冲击动力学学术会议论文集.2009:395-401.
[3]彭佳.复合柔性防护结构防爆炸作用技术研究[D].太原:中北大学,2015.
 PENG J.Research of the anti action of composite flexible protection structure[D].Taiyuan:North University of China,2015.
[4]王海福,冯顺山.爆炸载荷下聚氨酯泡沫中冲击压力特性[J].爆炸与冲击,1999,19(1):78-83.
WANG H F, FENG S S. Properties of shock pressure caused by explosion loads in polyurethane foam[J]. Explosion and Shock Waves,1999,19(1):78-83.
[5]董永香,黄晨光,段祝平.多层介质对应力波传播特性影响分析[J].高压物理学报,2005,19(1):59-65.
 DONG Y X, HUANG C G,DUAN Z P. Analysis on the influence of multi-layered media on stress wave propagation[J]. Chinese Journal of High Pressure Physics, 2005,19(1):59-65.
[6]高性能材料凯夫拉[J].广东塑料,2005(Z1):20.
[7]邵先锋,赵捍东,朱福林,等.一种新型柔性复合防护结构的数值模拟[J].兵器装备工程学报,2017,38(6):142-145.
 SHAO X F ,ZHAO H D, ZHU F L ,et al. Numerical simulation of a new flexible compound protective structure[J]. Journal of Ordnance Equipment Engineering, 2017,38(6):142-145.[8]李刚,陈正汉,谢云.波在分层材料中的传播及防冲击波分层材料结构的设计[J].振动与冲击,2005,24(2):89-105.
 LI G, CHEN Z H, XIE Y. Wave propagation in sandwich materials and design of anti-shockwave sandwith structure[J]. Journal of Vibration and Shock, 2005,24(2):89-105.
[9]张国伟.爆炸作用原理[M].北京:国防工业出版社,2006.
[10]艾尔防务-柔卫甲柔性防护[EB/OL][2018-10-10].http://www.rouweijia.cn/.
[11]苗朝阳,李秀地,杨森,等.温压弹爆炸效应与防护技术研究现状[J].兵器装备工程学报,2016,37(4):155-159.
 MIAO C Y, LI X D, YANG S,et al. Research status of explosion effect and protection technology of thermobaric bomb[J]. Journal of Ordnance Equipment Engineering , 2016,37(4):155-159.
[12]张姝红,陈高杰,高浩鹏,等.高速摄像防护结构抗水中爆炸冲击仿真研究[J].兵器装备工程学报,2016,37(5):53-56.
 ZHANG S H, CHEN G J, GAO H P,et al. Simulation on behavior of protecting structure for high-speed camera to underwater explosions shock[J]. Journal of Ordnance Equipment Engineering, 2016,37(5):53-56.

相似文献/References:

[1]王启睿,张晓忠,孔福利,等.坑道中木格栅消波器的消波效应试验研究[J].爆破器材,2011,40(01):1.
 WANG Qirui,ZHANG Xiaozhong,KONG Fuli,et al.Test Research of Shockwave Attenuation Effect about Wooden Lattice Machine in Tunnel[J].EXPLOSIVE MATERIALS,2011,40(01):1.
[2]张朋军,何洋扬,赵红宇,等.大当量炸药齐爆远区安全性分析[J].爆破器材,2009,38(02):32.
 ZHANG Pengjun,HE Yangyang,ZHAO Hongyu,et al.Far-area Blasting Safety Analysis of Big Amount Dynamite[J].EXPLOSIVE MATERIALS,2009,38(01):32.
[3]成凤生,宋浦,顾晓辉,等.TNT装药爆炸波在刚性平面上方传播反射的数值研究[J].爆破器材,2011,40(04):1.
 CHENG Fengsheng,SONG Pu,GU Xiaohui,et al.Numerical Investigation into the Propagation and Reflection of TNT Blast Wave above Rigid Plane[J].EXPLOSIVE MATERIALS,2011,40(01):1.
[4]于文华①②,张亚栋①.爆炸冲击波在坑道内传播规律研究[J].爆破器材,2013,42(03):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
 YU Wenhua,ZHANG Yadong.Study on Propagation Laws of Explosion Shock Wave in Tunnels[J].EXPLOSIVE MATERIALS,2013,42(01):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
[5]穆朝民①,任辉启②,李永池①,等.爆炸冲击波在复杂坑道内传播规律的数值研究[J].爆破器材,2008,37(05):1.
 Mu Chaomin,Ren Huiqi,Li Yongchi,et al.Numerical Investigation on Blast Shock Wave Propagation in the Complex Tunnel[J].EXPLOSIVE MATERIALS,2008,37(01):1.
[6]邵先锋①,赵捍东①,朱福林②,等.爆炸冲击波作用于便携式防爆墙的绕射规律[J].爆破器材,2017,46(06):6.[doi:10.3969/j.issn.1001-8352.2017.06.002]
 SHAO Xianfeng,ZHAO Handong,ZHU Fulin,et al.Diffraction Laws of Explosion Shock Waves Acting on Portable Explosion-proof Walls[J].EXPLOSIVE MATERIALS,2017,46(01):6.[doi:10.3969/j.issn.1001-8352.2017.06.002]

备注/Memo

备注/Memo:
收稿日期:2017-06-29
第一作者:崔小杰(1993-),硕士研究生,研究方向:弹药工程与毁伤技术。E-mail:574626213@qq.com
更新日期/Last Update: 2019-01-17